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Key Points:
- GiinSTeHtSNEETen by features within the upstream sheath region can accu-

rately predict minimum valuestof Bz withinntheejecta
e The most important and statistically significant features are sheath numbériden:
sity and total field strength.

e These features capture compression upstream of the ICME. which correlates with
the overall magnetic strength of the ejecta.
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Abstract

Accurately predicting the z-component of the interplanetary magnetic field, particularly
during the passage of an interplanetary coronal mass ejection (ICME), is a crucial ob-
jective for space weather predictions. Currently, only a handful of techniques have been
proposed and they remain limited in scope and accuracy. Recefitlyparrobustimachinerlearn:
ing (ML) technique was developed for predicting the minimum value of B, within ICMEs
basedronrarsetrof 42 ‘features’) that is, variables calculated from measured quantities up-
stream of the ICME and within its sheath region. In this studjclnvesHEICIINESEIS0R
GlisdesplanaenaaEablesNRNmereeTNNeENSINENen t hosc that were (1) statistically
significant: and (2) most important. WV euinumrmmetensintseneteismengh
concdNcENETEeIpIopononIIeieNEREEli ty. These features capture the degree to

which the ICME compresses the ambient solar wind ahead. Intuitively, this makes sense:

Energy made available to CMEs as they erupt is partitioned into magnetic and kinetic
energy. Thus, more powerfullCMEsare launched with larger flux-rope fields (larger B,),

at greater speeds, resulting in moressheathicompressioni(increased number density and

total field strength).

Plain Language Summary

As our society becomes more technologically reliant, the need to accurately fore-
cast the severity of geomagnetic storms becomes increasingly important. Storms driven
by fast coronal mass ejections (CMEs) represent the biggest threat, being responsible
for all of the major geomagnetic events in recorded history, in part, because they con-
tain the largest magnetic fields within them. Fast CMEs ploughing through the solar wind
produce a so-called “sheath” region ahead of them. In this study, we relate the proper-
ties of the sheath region to the size of the CME’s magnetic field, demonstrating that es-
timates of compression provide the most robust predictions of the ensuing magnetic field.
This relationship is a promising forecasting approach that could provide more than one
day’s advance warning before the arrival of the peak magnetic fields within the CME.

1 Introduction

An accurate prediction of the large-scale interplanetary magnetic field, and, in par-
ticular, its z-component, B, is a crucial parameter for any space weather forecasting sys-
tem, and yet, thus far, it has remained largely illusive (a point exemplified by the fact
that no prediction centre currently provides a forecast for B,). Many processes contribute
to a non-zero z-component of the IMF. However, in the absence of transient effects, the
large-scale quiescent spiral heliospheric magnetic field has no net B,. Waves and turbu-
lence can be superposed on top of this large-scale picture (e.g. Horbury & Balogh, 2001),
but, in and of themselves, these fluctuations do not actively drive substantial space weather.
From a geo-effective viewpoint, large solar eruptions generating coherent flux rope struc-
tures that propagate relatively undisturbed to 1 au represent the major source of geo-
magnetic storms, particularly if the axis of the flux rope lies in, or near to, the ecliptic
plane. In addition, fast CMEs drive fast-mode shocks ahead of them that compress the
IMF, amplifying the wave/turbulent fluctuations. Furthermore, draping of the large-scale
field around the ejecta can result in large, sustained values of B, (Gosling & McComas,
1987). Thus, from a prioritised, operational perspective, it is the fast, coherent CMEs,
driving a strong sheath region that require our attention (Lugaz et al., 2016).

Several promising approaches for predicting B, have been developed over the years,
ranging from strictly statistical techniques (e.g., Riley et al. (2017); J. Chen et al. (1996))
to self-consistent, physics-based global magnetohydrodynamic (MHD) simulations (e.g.,
Riley et al. (2007); Shiota and Kataoka (2016); Toérok et al. (2018)). Between these ex-
tremes is a range of empirically-based approaches that combine observations with lim-
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ited empirical or statistical modelling to optimize predictive capabilities (e.g., Savani et
al. (2015); Mostl et al. (2017)).

Machine learning (ML) techniques have become widely adopted within many sci-
entific fields (e.g., Witten and Frank (2005)). Solar and heliospheric research, in partic-
ular, is currently benefitting from the application of both supervised and unsupervised
techniques to understand better, or at least describe and predict, a wide array of phe-
nomena (e.g., Qahwaji et al. (2008); Bobra and Couvidat (2014); Camporeale et al. (2017,
2018); Heidrich-Meisner and Wimmer-Schweingruber (2018); Bailey et al. (2020); Cam-
poreale (2020). Supervised ML algorithms, in particular, can be effective approaches for
solving regression problems. More straightforward multiple regression approaches remain
valid; however, more complex techniques, such as the random forest algorithm, promise
to mitigate issues such as over-fitting, hyper-parameter tuning, and handling missing data
(e.g., Xia et al. (2017)). An important caveat, however, is that while simpler algorithms,
such as simple multiple regression, can be easily understood, self-coded, or at least care-
fully examined, many of the ML algorithms must be treated as “black boxes.” The use
of standard packages containing the routines, which have been tested extensively across
many scientific domains, provides reassurance that the implementation of the algorithms
is correct and robust.

In a previous study, we applied ML methodology to assess whether upstream in-
situ ICME sheath region measurements could provide estimates of the resulting (1) min-
imum value in the B, component of the magnetic field; or (2) maximum value of the to-
tal field (|B]), within the following ICME (Reiss et al., 2021). We developed a predic-
tive model based on 348 ICMEs observed by Wind, STEREO-A, and STEREO-B space-
craft. We found relatively high associations (Pearson Correlation Coefficient, PCC = 0.71
and 0.91, respectively) between the target variable and a set of 42 input (explanatory)
variables or features. These explanatory variables were made up of various statistical prop-
erties of the three components of the magnetic field, total magnetic field strength, plasma
density, temperature, and bulk solar wind speed, specifically: the mean value, standard
deviation, minimum and maximum values, the ratio between the maximum and mini-
mum values, and the ratio between the mean value and standard deviation (i.e., the co-
efficient of variation). Thus, for each of the seven variables, there were six statistical mea-
sures, resulting in 42 features or input variables that could, in principle, explain the ob-
served variations in either the minimum value of B, within the ejecta, or the maximum
value of the field. Since the objective was to derive a predictive model, we separated the
348 events into a training (4/5) and evaluation (1/5) dataset and applied three models
(linear regressor (LR), random forest regressor (RFR), and gradient boosting regressor
(GBR)). The high resulting PCC values suggested that this might be a promising fore-
cast tool for estimating the strength of the ICME’s magnetic field many hours before its
arrival at 1 au. The original study, however, left several questions unanswered. First, which
of the 42 input variables were most important, that is, which variables were responsi-
ble for most variations in B, within the ICME? Second, which variables were statisti-
cally significant? Third, scientifically, what was the underlying mechanism for the strong
association between at least some of the input variables and the target variables?

In this study, we aim to build on this previous study by addressing these questions.
Specifically, we seek to identify those variables that are statistically significant and those
that contribute most to the variability in the targets and to provide an explanation for
why. In doing so, we believe that this also addresses a concern often raised with respect
to the application of ML techniques within Heliophysics: What do we learn from their
use? While the previous study (Reiss et al., 2021) directly addressed an operational space
weather need and, thus, was not primarily concerned with these issues, the present study
aims to use ML approaches to better understand why such high correlations are present.

In the Sections that follow, we first introduce the dataset and outline how it is pre-
processed, then summarize the ML techniques we plan to apply. We next describe one



set of analyses in detail and provide summaries of several re-analyses based on different
initial processing of the data. Finally, we interpret the results from an intuitive picture
of ICME evolution, discuss the limitations of this study, and provide suggestions for how
this study could be improved upon in the future.

2 Methodology
2.1 Data

Reiss et al. (2021) identified 364 ICMEs that produced an upstream sheath region
from the HELIO4CAST ICME catalogue (Méstl et al., 2020). The requirement that they
drive a sheath ahead (or, technically, displayed a density enhancement) likely meant that
these ICMEs travelled faster than the ambient wind within which they were embedded,
although the compression could be produced by expansion of a slower ejecta (Siscoe &
Odstreil, 2008; Salman et al., 2021). All events were observed by Earth-based or STEREO-
A /B spacecraft between January 2007 and March 2021, and thus, were all located at ap-
proximately 1 au. The list was further pruned to 348 events for which there was good
data coverage.

Additionally, although the original catalogue did not contain any information about
whether or not a shock preceded the CME, we cross-referenced the HELIO4CAST ICME
catalogue with an independent catalogue of CME-driven shocks identified in the Wind
dataset (Nieves-Chinchilla et al., 2018), and created a new dataset of events with a 0/1
indicating whether a shock was, or was not present. Of the total number of events (348),
247 were found to be driving an interplanetary shock, while for 101 events, no obviously
associated shock could be found.

From the time series of these events, six statistical measures (mean, standard de-
viation (std), minimum (min), maximum (max), the ratio of maximum to minimum val-
ues (minmax), and the coefficient of variation (cv), i.e., the ratio of the mean to stan-
dard deviation) were calculated for each of the following variables: Total magnetic field
(By), three components of the field (B, By, B.), bulk plasma speed (v;), number den-
sity (np), and proton temperature (T},). The vector quantities are given in the Heliocen-
tric Earth equatorial (HEEQ) system, based on the Sun’s rotation axis, where the z-axis
is parallel to the Sun’s rotation axis (positive northward), the x-axis points towards the
intersection of the solar equator and the solar central meridian as seen from Earth, and
the y-axis completes the right-hand orthogonal system. The temporal boundaries used
to compute these quantities were from the start of the sheath to the end of the sheath
interval. Reiss et al. (2021) also investigated the effects of adding an additional four hours
of data at the start of each window, thus, incorporating a small portion of the actual ejecta
into the explanatory variables.

The dataset (containing 348x42 (14616) points) is summarised in Table 1, which
shows each feature in column 1. For each, the mean, standard deviation, minimum, 25th
and 75th percentiles, and maximum values are given. Note that these are the statistics
of the features, which are also statistical measures themselves. Thus, the ‘St. Dev.” (col-
umn 4) of ‘std.bx’ is the standard deviation of the standard deviations computed for each
of the 348 sheath regions. The last row summarizes the ‘Target’ or output variable, which
in this case is the minimum value of B, within the ejecta. The abbreviation ‘std’ refers
to the standard deviation, ‘cv’ is the coefficient of variation, or the ratio between the mean
value and the standard deviation, and ‘minmax’ is the ratio between the maximum and
minimum values. For convenience, bt refers to the total magnetic field component, |B|,
while the other variables are easily understood.

Although we will refer back to these values later, it is worth noting that they are,
in some cases, quite different from the average properties of the ambient solar wind. For
example, the mean number density (mean.np.) for the sheath regions is 14.1 cm~3, which
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is more than twice the average number density for the background solar wind at 1 au.
Moreover, the maximum value (84.2 cm~3) is more than an order of magnitude higher.

To assess the effects of varying data ranges on the model results, these data were
re-normalized in one of several ways. This can mitigate potential biases from some fea-
tures having a much broader range and, hence, a disproportionate effect on the results.
First, a min-max procedure was applied where all variables were re-scaled such that the
minimum value was set to zero and the maximum value to one. While this potentially
levels all data to the same range, if outliers are present, it can have the reverse effect of
squeezing some datasets to a disproportionately smaller range. Thus, a second approach
of z-score re-normalisation was also applied. This transformation refers to the process
of re-normalizing each value in a dataset so that the mean of all of the values is 0 and
the standard deviation is 1. The effects of wide or narrow data ranges are addressed as
well as mitigating the impacts of outliers. The only minor impact lies in visual interpre-
tation, where the min-max procedure is advantageous in allowing all data to be viewed
between zero and one. With the exception of Table 1, all statistical model results are
reported in relation to z-score re-normalization.

Since the original study was completed (Reiss et al., 2021), an update to the HE-
LIO4CAST ICME catalogue has been published online (ICMECATv2.1 ). This contains
521 events with sheath regions from Wind 1995-2021, and STEREO-A/B 2007 - 2021.
To more directly link the current study with the original, we primarily analyse events
from the original dataset. We repeated the analysis with the v2.1 data, however, to ver-
ify that the main inferences and conclusions drawn did not change with the addition of
more events.

2.2 Models

In this study, multiple regression models were analyzed using several packages in
R, primarily relying on the “Fitting Linear Models” suite (Im) (R Core Team, 2019). These
regression techniques, however, only identify the statistical significance of the variables.
To estimate the relative importance of each explanatory variable in describing the vari-
ability in depth, we applied traditional statistical and more modern machine learning
(ML) approaches.

To identify the explanatory variables that provided the best-performing model (i.e.,
one that lowered the prediction error), we used the ’stepAIC’ function from the MASS
package (Venables & Ripley, 2002). Both forward selection and backward selection (i.e.,
backward elimination) were performed (James et al., 2013). In the former, initially, no
predictors are included in the model, and the algorithm iteratively adds the most con-
tributory variables, stopping when the improvement is no longer statistically significant.

Using multiple approaches is important for assessing the uncertainty that should
be ascribed to a particular ordering of the variables since different techniques rely on dif-
ferent metrics for importance. The techniques applied included: random forest (Liaw et
al., 2002), Xgboost (T. Chen & Guestrin, 2016), relative importance (Gromping et al.,
2006), MARS via earth (wrapper, 2019), step-wise regression (Bendel & Afifi, 1976), and
DALEX (Biecek, 2018). These were chosen because they are representative of the most
widely applied methods.

It is important to reiterate that these techniques use different definitions of what
signifies “important”, and, thus, we do not expect complete agreement amongst the re-
sults. Nevertheless, where the results do agree is where we can be most confident, and
where they do not, we must remain more cautious.

It is worth remarking that we chose to use a broad range of ML techniques to high-
light both the robustness of the approaches, but also their limitations. Thus, together,



they could be thought of as an “ensemble” of models where agreements can be used to
increase our confidence and disagreements to reduce it. On the other hand, it is beyond
the scope of the present study to attempt any kind of ensemble forecast framework us-
ing realizations of the different approaches.

We also note that our purpose here is to apply these statistical models to under-
stand which of these explanatory variables are most important for explaining the vari-
ations in B, within the ejecta. In particular, this was not a predictive exercise, as was
undertaken by Reiss et al. (2021); our aim is to understand why the ML techniques per-
form so well and what they teach us about what is driving these associations.

3 Results

When a multiple linear regression analysis was performed on the 42-parameter dataset,
five explanatory variables were found to be most significant (p < 0.05): mean.bt., std.bt.,
cv.bt., mean.np., and max.np. (Table 2). A low p-value indicates that we can reject the
null hypothesis that the relation between the explanatory variable and the target (B.
within the ICME) is statistically insignificant. Together, the goodness-of-fit measure R?
was 0.579, and thus, these variables, together, are capable of explaining 58% of the vari-
ations in B, within the ICME.

Focusing specifically on these variables, we repeated the regression analysis. This
led to the results shown in Table 3. From this, we infer that five of the variables are sta-
tistically significant at the p < 0.01 level (mean.bt., std.bt., cv.bt., mean.np., and max.np.).
In general, we infer that the parameters associated with |B| and n, appear to be sta-
tistically significant. Intuitively, this makes sense that |B| and n, would be correlated
within compression regions.

We can visually inspect the relationship between these statistically significant vari-
ables. Figure 1 shows a scatterplot matrix for these five most significant input (explana-
tory) variables and the target variable. Scanning down the first column or along the first
row, we note that B, within the ICME (target) is negatively correlated with each of the
five input variables. That is, larger negative B, values are associated with larger pos-
itive values of the input variables. However, we also note that the scatter is large, which
is also reflected in the confidence regions. Additionally, the input variables are each pos-
itively correlated with one another, with the degree of correlation varying from one pa-
rameter to another, but, generally being higher within the |B| or n, groupings. Com-
paring these groups results in a lower correlation.

While the preceding analysis heuristically investigated the possible contribution of
the explanatory variables in describing the variations in BI“M¥  we next apply more
robust techniques using a variety of algorithms to assess both statistical significance and
importance. In these approaches, explanatory variables are iteratively added or removed
to identify the subset of variables that produce the best-performing model, that is, the
model with the lowest prediction error.

First, using R’s MASS package, we applied both forward selection, where variables
were added iteratively until the improvement is no longer statistically significant, and
backward elimination, where variables are iteratively removed until the point is reached
where all the variables are statistically significant (Table 4). Based on this analysis, 22
variables account for 57% of the variability in BIMF_ This is approximately the same
as the 58% that we computed using our ad hoc approach of searching through the vari-
ables. In this case, the most statistically significant parameters, in order of importance,
were found to be: std.bt., mean.np., cv.bt., mean.bt., and max.np.

Using the Random Forest method to assess the importance of the variables, we found
the eight most important variables (in order of importance) were: mean.np., min.np.,



Table 2. Summary of multiple-regression analysis on 42 explanatory variables described in
Table 1. For brevity, some of the entries that were found not to be statistically significant have
been omitted. The terms in parentheses represent the standard error (an estimate of the stan-
dard deviation of the coefficient), while the Residual Std. Error measures how well a regression
model fits a dataset, and the F Statistic tests the significance of regression coefficients in linear

regression models.

Dependent variable:

Target
max.bx. 0.047
(0.114)
std.bx. 0.136
(0.131)
min.bx. 0.056
(0.111)
cv.bx. —0.064
(0.039)
minmax.bx. —0.045
(0.038)
mean.by. 0.011
(0.077)
max.by. 0.092
(0.136)
std.by. —0.200
(0.141)
min.by. 0.118
(0.151)
cv.by. 0.011
(0.041)
minmax.by. 0.036
(0.038)
mean.bt. 0.591***
(0.196)
max.bt. —0.481
(0.295)
std.bt. —0.775"**
(0.260)
min.bt. —0.083
(0.132)
cv.bt. 0.648***
(0.141)
mean.np. —0.689"**
(0.194)
max.np. 0.440**
(0.182)
std.np. 0.012
(0.192)
min.np. —0.083
(0.131)
cv.np. —0.183"
(0.111)
minmax.tp. 0.148™
(0.083)
Constant —0.000
(0.037)
Observations 348
R? 0.579
Adjusted R? 0.523
Residual Std. Error 0.691 (df = 306)
F Statistic 10.280*** (df = 41; 306)
Note: *p<0.1; **p<0.05; ***p<0.01

min.by., std.by., max.bt., mean.tp, max.bz., and mean.bt (Table 5). Beyond this, there
was a drop in relative importance. We note that bz-based variables are likely to be as-



Table 3. Summary of the five most significant explanatory variables for predicting the mini-
mum value of B, within the ICME.

Dependent variable:

Target
mean.bt. 0.341***
(0.108)
std.bt. —1.034***
(0.142)
cv.bt. 0.522%**
(0.094)
mean.np. —0.645***
(0.079)
max.np. 0.321***
(0.087)
Constant —0.000
(0.039)
Observations 348
R? 0.473
Adjusted R? 0.466

Residual Std. Error 0.731 (df = 342)
F Statistic 61.496"* (df = 5; 342)

Note: *p<0.1; **p<0.05; ***p<0.01

sociated with |B| within compression regions, thus, to some extent they can be consid-
ered confounding variables. Comparing this list with the significant variables identified
earlier suggests that any subset of significant and important explanatory variables would
include — at least — include: mean.bt., max.bt., and mean.np. It should be noted that
re-running the Random Forest Method repeatedly resulted in different estimates - this
is a statistical method employing random variables. Thus, particularly as we step down
through the variables, less confidence can be given to their relative positions. For exam-
ple, cv.tp. and minmax.tp., for example, often change their relative strength, although
their ratios with respect to mean.np, for example, always remains significantly less than
one.

Applying the Xgboost method for ranking explanatory variables in order of their
importance identified min.by., max.bt., mean.np., mean.bt., std.by., min.np., mean.by.,
and mean.tp. (Table 6). Beyond these, the remaining variables were only 10% or less
of the power of the most important variable. Again, we note that features associated with
|B|, n, and B, dominate the list.

The Multivariate Adaptive Regression Splines (MARS) model can also be used to
rank explanatory variables. It is a flexible technique and is included here to provide ev-



Table 4. Step-wise regression using the MASS package.

Dependent variable:

Target
std.bx. 0.117*
(0.065)
cv.bx. —0.068*
(0.038)
min.by. 0.247%**
(0.076)
min.bz. —0.195**
(0.078)
minmax.bz. 0.058
(0.038)
mean.bt. 0.591%**
(0.144)
max.bt. —0.468**
(0.198)
std.bt. —0.7TT***
(0.170)
cv.bt. 0.596***
(0.098)
mean.vt. 0.452%**
(0.172)
std.vt. —0.436*
(0.254)
cv.vt. 0.472%*
(0.221)
mean.np. —0.642%**
(0.147)
max.np. 0.471%%*
(0.127)
min.np. —0.171**
(0.081)
cv.np. —0.154**
(0.070)
max.tp. 0.257**
(0.115)
std.tp. —0.335%**
(0.123)
min.tp. —0.144**
(0.058)
minmax.tp. 0.143**
(0.056)
max.vt. —0.255
(0.168)
Constant —0.000
(0.036)
Observations 348
R? 0.565
Adjusted R2 0.537
Residual Std. Error 0.680 (df = 326)
F Statistic 20.179%** (df = 21; 326)
Note: *p<0.1; **p<0.05; ***p<0.01

idence for the sensitivity of our results to the technique implemented (Table 7). Thus,
we remark that cv.vt and std.vt are given a higher relative position than mean.tp., say,
which is in contrast to the random forest (Table 5) and Xgboost (Table 6) methodolo-
gies. Again, variations in B/“M¥ are explained primarily by features in By, ny, and |B].

We can also explore these results graphically (Figure 2), which highlights the rel-
ative contribution of the variables. In particular, we note that, in this case, the first four
variables account for most of the variability in BICME,
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Table 5.

Random Forest Method for the relative importance of parameters.

Parameter Overall
Overall

max.bx. -0.2629452
std.bx. 1.3208674
min.bx. 1.4478551
cv.bx. 2.4411125
minmax.bx. -2.5282641
mean.by. 3.3642488
max.by. 5.4092380
std.by. 8.0053151
min.by. 8.5938032
cv.by. -1.6325343
minmax.by. 1.3254579
mean.bz. 1.0951099
max.bz. 7.4562721
std.bz. 5.8829339
min.bz. 3.0405328
cv.bz. 0.2845630
minmax.bz. 1.9436885
mean.bt. 7.1670919
max.bt. 7.7885147
std.bt. 4.0623384
min.bt. -2.4643346
cv.bt. -0.9527299
minmax.bt. 1.6490376
mean.vt. 4.3299150
max.vt. 4.1455184
std.vt. 1.3582930
min.vt. 1.7991820
cv.vt. 1.6273622
minmax.vt. 2.8107001
mean.np. 12.5156175
max.np. 5.8775704
std.np. 1.2936570
min.np. 11.3617008
cv.np. 1.9204835
minmax.np. 2.7836057
mean.tp. 7.5204233
max.tp. 2.9264847
std.tp. 3.8501390
min.tp. 4.2046862
cv.tp. 3.6325805
minmax.tp. 2.9420327

The Stepwise regression method can also be combined with the Akaike Informa-
tion criteria (AIC) to identify the best model, that is, the best combination of param-
eters to explain the output variable. Higher values of AIC provide more support for a
particular variable’s importance. Using this approach, in order of importance, mean.np.,
cv.bt., and std.bt. were all found to be particularly important (Table 8).
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Table 6. Xgboost Method for relative importance of parameters. Top-20 shown.

Parameter Overall
min.by. 100.000
max.bt. 88.261
mean.np. 32.384
mean.bt. 23.530
std.by. 18.147
min.np. 17.399
mean.by. 14.750
mean.tp. 13.012
max.bx. 10.333
minmax.np. 6.411
cv.vt. 5.980
max.bz. 5.911
cv.bt. 5.464
cv.bx. 5.017
minmax.tp. 4.914
cv.by. 4.499
max.tp. 4.311
min.tp. 3.853
minmax.bz. 3.809
minmax.bx. 3.754

Table 7. MARS Method for the relative importance of parameters. Results are sorted by order

of descending importance given by measures gcv and rss.

Parameter nsubsets gev rss

min.by. 12 100.0 100.0
mean.np. 11 59.8 63.1
mean.bt. 10 49.8 53.8
min.np. 8 36.1 40.9
cv.vt. 7 26.9 33.0
std.vt. 5 18.3 24.7
max.np. 5 18.3 24.7
mean.tp. 4 17.9 23.2
std.np. 4 17.1 22.5

Finally, we consider the DALEX package, which is, in fact, a meta-package in the
sense that it can compare responses from different models to allow for direct compar-
ison. Here, though, we apply the DALEX machinery with the random forest technique
and use the ‘explain’ and ‘variable_importance’ functions to quantify their relative im-
portance (Table 9). In this case, mean.np., max.bt., min.by., std.by., min.np., and mean.bt.
describe most of the observed variability in BIMF  with a large jump between mean.bt.
and the next variable, max.np. The degree to which these variables contribute to the over-
all variations can also be visualized graphically (Figure 3). From this, we infer that the
first six variables account for most of the observations.
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Table 8. Step-wise Regression Method for the relative importance of parameters. Only the 10

most important parameters are shown in increasing order of importance.

Parameter Df  Sum of Sq RSS AIC

none 156.29  -246.56
cv.np. 1 1.8425 158.13  -244.49
max.bz. 1 2.6053 158.90 -242 .81
std.bz. 1 3.6149 159.91  -240.61
mean.bt. 1 4.1432 160.44  -239.46
max.np. 1 5.2433 161.53  -237.08
mean.tp. 1 6.4323 162.72  -234.53
min.by. 1 6.4458 162.74 -234.50
mean.np. 1 9.2595 165.55  -228.54
cv.bt. 1 15.5157 171.81  -215.63
std.bt. 1 15.7451 172.04  -215.16

Table 9. DALEX Step-wise Regression Method for relative importance of parameters.

No. variable mean dropout loss label

1 full model 0.3336585 randomForest
2 Target 0.3336585 randomForest
35 std.bt. 0.3660815 randomForest
36 max.np. 0.3789919 randomForest
37 max.by. 0.3822500 randomForest
38 mean.bt. 0.3975788 randomForest
39 std.by. 0.4044210 randomForest
40 min.np. 0.4075862 randomForest
41 min.by. 0.4163421 randomForest
42 max.bt. 0.4368321 randomForest
43 mean.np. 0.4562865 randomForest
44 baseline 1.2421413 randomForest

3.1 Re-Analysis using Updated Database

Although we focused on the same dataset reported by Reiss et al. (2021), we re-
peated the analysis with an updated ICME dataset (v2.1) containing a total of 521 events.
We found that the results were broadly consistent with the earlier analysis, although,
in general, the associations were found to be slightly worse, likely the consequence of the
more recent CMEs being generally weaker. Thus, while the main explanatory variables
remained the same (e.g., those derived from np and bt), those of lower importance (but
still statistically significant) were redistributed modestly within each table.

Finally, we repeated the analysis, this time separating out the events into those that
were preceded by shocks and those that were not. The results were generally consistent
with our expectations that the relationships were strongest for the group that contained
shocks and weakest for those that did not. However, the effect was modest. For exam-
ple, the adjusted-R2, a measure of model accuracy that attempts to mitigate the effects
of over-fitting, or in our case, address the differences in the sample size amongst the datasets,
was found to be: 0.500, 0.524, and 0.542 for the no-shock, all-events, and shock-only datasets.
Thus, the adjusted-R? increases as the proportion of shocks in the dataset increase, which
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we would intuitively expect, but also, the differences between all three datasets are rel-
atively modest.

4 Summary and Discussion

In this study, we found that statistical measures tracking number density and mag-
netic field strength accounted for a large proportion of the variability of the large-scale
z-component of the magnetic field within ICMEs. Taken together, these features cap-
ture the degree to which the ICME compresses the ambient solar wind ahead. Intuitively,
this makes sense: Energy made available to CMEs as they erupt is partitioned into mag-
netic energy density and kinetic energy. Thus, more powerful CMEs are launched with
larger flux-rope fields (larger B,), and at greater speeds. Faster CMEs produce greater
sheath compression leading to increased number densities and total field strength ahead
of the ICME.

In some methodologies, other potentially relevant features were found, such as the
mean proton temperature within the sheath region. This too is related to the compres-
sion of the region since the plasma heats up as it is squeezed. The fact that tempera-
ture was not found to be consistently as important in explaining the field variations within
the ejecta may be related to the intrinsic noise associated with these measurements, thus,
reducing the signal component. It is also worth pointing out that features such as those
related to v, and B,, which would not be modified when compressed, were notably ab-
sent (or relegated to lower importance) in most of the results, strengthening the idea that
compression is the key mechanism connecting the features to the targets.

In our study, whether the sheath region was bounded by a shock did not appear
to make a significant difference. Hence, this approach works for events that are not suf-
ficiently strong as to drive an observable shock. All that is required is a sheath region.
On the other hand, the association was stronger for the events with shocks. Thus, we
suggest that this approach is likely more accurate for these events. Additionally, adding
more recent events to the dataset modestly reduced the associations. This suggests, at
least tentatively, that there may be a solar cycle effect, although more work would need
to be performed to support or refute the idea.

It should be emphasized that these results are statistical in nature. There is always
a danger of over-interpreting the results or ascribing a causal relationship to a seemingly
important feature that turns out to be spurious. Those associated with B,,, are a good
example. What is the significance of min.by? It does not appear to be directly related
to compression, in the more obvious way that mean.by or max.by might be. We could
conceive of a mechanism whereby negative values of By rather than positive values (i.e.,
large minima) might be preferentially associated with one magnetic sector (inward) over
another, but since the data span an entire solar cycle, it is not clear that such an asym-
metry would exist. Moreover, even if it did, it is not clear what the mechanism would
be. Instead, it may just be an indirect measure of the overall compression of the mag-
netic field, and more visible because it has less noise associated with it than, say, max.by.
Since its relative importance shifts depending on the ML approach used, we must also
recognise that its presence may be no more than a statistical anomaly. As noted previ-
ously, different techniques rely on different objective functions, thus, the optimum pri-
oritised list of features would be expected to change modestly from one technique to an-
other, and, certainly, as one steps further down in importance.

Our results can be compared with more traditional approaches for connecting up-
stream to downstream properties of solar wind structures. Borovsky and Denton (2010),
for example, used a superposed-epoch analysis of corotating interaction regions to quan-
tify how solar wind parameters change in crossing stream interfaces. More recently, Regnault
et al. (2020) used a similar technique to reveal some generic features of ICME profiles,
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finding that fast ICMEs still retained signs of compression at 1 au, and consistent with
our results. Additionally, they were able to reconstruct a general asymmetric profile in

the magnetic field, which was not possible with our approach. Finally, Salman et al. (2020)
analysed the properties of ICMEs and their associated sheaths using both statistical and
superposed-epoch approaches. They separated their events into: (1) CMEs with no sheath;
(2) CMEs with a sheath but no shock; and (3) CMEs with both a sheath and a shock,
finding that the two latter categories correlated well with the speed of the CME. In sum-
mary, they found that sheaths driving shocks tended to be more compressed (higher den-
sities and field strengths) and hotter.

This study could form the motivation for several follow-on investigations. For ex-
ample, using the updated v2.1 CME catalogue, the dataset could be used to pre-select
those events that are likely to be most geoeffective. These would likely be the fastest ICMEs,
driving the strongest sheath regions. We anticipate that the associations would be even
stronger for these events. Additionally, other estimates of the compressive properties of
ICME sheaths, such as from heliospheric imager or IPS measurements, could be used to
estimate the likely z-component of the magnetic field within the ICME, which could, in
principle, lead to longer forecasting lead times.

Our results expose the inherent sensitivity and limitations in applying complex sta-
tistical analyses to datasets containing both noise and a signal that is built up from com-
plex physical processes. While these techniques potentially reveal the real relative im-
portance of the features, it may not always be possible to separate them from statisti-
cal fluctuations driven by noise within the data. This is underscored by the re-analyses
of the data using different renormalisations of the data. While this did not materially
affect the main results of the study, it did re-shuffle the relative importance of some of
the more minor, yet statistically significant features. In spite of these limitations, we sug-
gest that our approach of applying many techniques to the same dataset is a valuable
exercise, in that it allows us to assess the likelihood of over-interpreting the results by
focusing solely on one approach.

In closing, we reiterate the main points of this study: (1) ML techniques can be
used to infer the z-component of the magnetic field within ICMEs using readily avail-
able measurements from in situ spacecraft upstream of them; (2) the most important and
statistically significant features are related to the sheath plasma density and field strength;
and (3) the physical interpretation of this result is intuitive — these parameters capture
the degree of compression upstream of the CME, which correlates with the ICME’s speed,
and, in turn, the overall strength of the magnetic field within the ejecta.
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Scatterplot Matrix for significant explanatory variables
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Figure 1. Scatterplot matrix of five significant explanatory variables for the min-
imum value of B, within an ICME. Panels show: B, within the ICME (the output or “tar-
get” variable), mean.bt., std.bt., cv.bt., mean.np., and max.np. Data are shown by the circles,
regression lines are solid, smoothed mean values are shown by the dashed line, and variances are
shown by the dashed-dotted lines.
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Figure 2. MARS Method for the relative importance of parameters. See text for

more details.
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Figure 3. Relative importance of explanatory variables using the DALEX method.

The RMSE loss is a measure of the relative importance of a particular input variable.
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